skip to main content


Search for: All records

Creators/Authors contains: "Halat, David M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lithium transference in a multivalent electrolyte containing bulky, star-shaped anions is compared using three experimental techniques, namely, electrochemical polarization, PFG-NMR and electrophoretic NMR.

     
    more » « less
    Free, publicly-accessible full text available August 9, 2024
  2. We demonstrate that contrary to previous reports, transference number decreases with increasing degree of polymerization in non-aqueous lithium-bearing polyelectrolyte solutions that have been proposed as next-generation battery electrolytes.

     
    more » « less
    Free, publicly-accessible full text available June 21, 2024
  3. Abstract

    Antiperovskite structure compounds (X3AB, where X is an alkali cation and A and B are anions) have the potential for highly correlated motion between the cation and a cluster anion on the A or B site. This so‐called “paddle‐wheel” mechanism may be the basis for enhanced cation mobility in solid electrolytes. Through combined experiments and modeling, the first instance of a double paddle‐wheel mechanism, leading to fast sodium ion conduction in the antiperovskite Na3−xO1−x(NH2)x(BH4), is shown. As the concentration of amide (NH2) cluster anions is increased, large positive deviations in ionic conductivity above that predicted from a vacancy diffusion model are observed. Using electrochemical impedance spectroscopy, powder X‐ray diffraction, synchrotron X‐ray diffraction, neutron diffraction, ab initio molecular dynamics simulations, and NMR, the cluster anion rotational dynamics are characterized and it is found that cation mobility is influenced by the rotation of both NH2and BH4species, resulting in sodium ion conductivity a factor of 102higher atx = 1 than expected for the vacancy mechanism alone. Generalization of this phenomenon to other compounds could accelerate fast ion conductor exploration and design.

     
    more » « less